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a b s t r a c t

For the first time, several second-order calibration models based on artificial neural network-residual
bilinearization (ANN-RBL), unfolded-partial least squares-RBL (U-PLS/RBL), multidimensional-partial
least squares-RBL (N-PLS/RBL), multivariate curve resolution-alternating least squares (MCR-ALS), and
parallel factor analysis 2 (PARAFAC2) were used to exploiting second-order advantage to identify which
technique offers the best predictions for the simultaneous quantification of norepinephrine (NE),
paracetamol (AC), and uric acid (UA) in the presence of pteroylglutamic acid (FA) as an uncalibrated
interference at an electrochemically oxidized glassy carbon electrode (OGCE). Three-way differential
pulse voltammetric (DPV) arrays were obtained by recording the DPV signals at different pulse heights.
The recorded three-way arrays were both non-bilinear and non-trilinear therefore, the observed shifts in
the recorded DPV data were corrected using correlation optimised warping (COW) algorithm. All the
algorithms achieved the second-order advantage and were in principle able to overcome the problem of
the presence of unexpected interference. Comparison of the performance of the applied second-order
chemometric algorithms confirmed the more superiority of U-PLS/RBL to resolve complex systems. The
results of applying U-PLS/RBL for the simultaneous quantification of the studied analytes in human
serum samples were also encouraging.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The recent developments in multi-dimensional analytical
instrumentation and data collection are producing data arrays of
increasing complexity, which are particularly useful for quantita-
tive analysis in complex mixtures. It is apparent that this progress
towards multi-way data offers theoretical and practical advantages
from an analytical point of view [1–3]. For example, whereas
zeroth-order univariate calibration cannot detect sample compo-
nents producing an interfering signal, first-order calibration,
which operates using a vector of data per sample, may compensate
for these potential interferents, provided they are included in the
calibration set, a property known as the “first-order advantage”
[4]. Going one step further, second-order data lead to three-way
arrays which can be uniquely decomposed, allowing relative
concentrations and profiles of the individual components in the
different domains to be extracted directly. In this way, analytes can
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be quantified even in the presence of unknown interferents which
are not included in the calibration set. This property has been
generally recognized as the “second-order advantage”, a term
coined in 1994 [4], although the first experimental demonstration
of this advantage was reported in 1978, when perylene was
determined in mixtures with anthracene, by suitable processing
of fluorescence excitation-emission matrix data [5]. Second-order
data for a given sample can be easily produced in a variety of ways,
either in a single instrument or by resorting to instrument
hyphenation.

Multi-way analysis allows direct separation of the measured
signals into the underlying contributions from individual analytes.
In second-order domain, three-way data generates a matrix from a
single chemical sample. The processing of second-order data have
attracted the attention of chemometricians in recent years for a
variety of reasons: (1) they are now abundantly produced by
modern analytical instruments, (2) they show peculiar mathema-
tical characteristics which distinguish them from first order data,
and (3) they provide analytical chemists with the important
second-order advantage, an intrinsic property which permits
analyte quantitation in the presence of unexpected sample com-
ponents (i.e., components not present in the calibration set of
samples) [6].

Norepinephrine (NE) is an important catecholamine neuro-
transmitter and is secreted by the adrenal medulla. It is released as
a metabotropic neurotransmitter from nerve endings in the
sympathetic nervous system and some areas of the cerebral cortex.
Many diseases are related to changes of its concentration [7]. Thus
the quantitative determination of NE in biological fluids for
medical control and in pharmaceutical formulations for quality
control analysis is important. Besides various methods such as
spectrophotometry [8], capillary electrophoresis [9], gas chroma-
tography [10] and high-performance liquid chromatography [11];
electrochemical methods have also been employed for detection of
NE [12–15].

Paracetamol (AC) is the most extensively employed drug as
pain reliever and fever reducer. However, overdoses of AC cause
liver and kidney damage and may lead to death [16,17]. Several
methods have been used for the determination of AC including
spectrophotometry [18], chromatographic methods [19] and elec-
troanalysis by modified electrodes [20–24].

Uric acid (UA or 2,6,8-trihydroxypurine) is the primary end
product of purine metabolism. Physiological UA serum level is in
the range of 4.1–8.8 mg (per 100 mL) and with urinary excretion
typically in the range of 250–750 mg (per 100 mL). Its abnormal
concentration level in the human body will lead to several
diseases such as hyperuricaemia, gout, leukemia, lesch-nyhan
syndrome and pneumonia [25]. Therefore, the development of a
rapid, selective and simple method is very important for its
determinations in routine analysis. Due to the advantages of low
cost, fast response, simple instrumentation, high sensitivity, facile
miniaturization, and low power requirement, numerous voltam-
metric methods for determination of UA have been developed
[26–28].

AC administration increases brain serotonin levels [29] and
serotonin is known to play a role in NE release in the brain [30].
Also, pteroylglutamic acid (FA) works primarily in the brain and
nervous system and is necessary for the synthesis of NE and
serotonin in the nervous system. Also, some substances like
nonsteriodal anti-inflammatory drugs such as AC can inhibit FA
from being absorbed or used by the body. Likewise, when taken
for long periods of time, AC can also increase the need for FA [31].
On the other hand UA is naturally present in the body therefore,
after drugs ingestion NE, AC, UA, and FA can be found in biological
fluids. FA is one of the usual interferences in the simultaneous
determination of NE, AC, and UA because the oxidation peak

potential for FA was very close to those of NE, AC, and UA
therefore, FA was considered as interference in the simultaneous
determination of NE, AC, and UA.

In the present study, we introduced an efficient electroanaly-
tical method based on exploiting second-order advantage from
DPV data for the simultaneous quantification of AC, NE, and UA in
the presence of FA as uncalibrated interference. Glassy carbon
electrode (GCE) is made up of special type of carbon which
fabricated by pyrolsis of polymer resin exhibits good electrical
conductivity with well-defined surfaces. The chemical and elec-
trochemical pretreatment shows significant changes in physical
and electrochemical properties of GCE. In particular, electroche-
mical activation of GCE results in the generation of surface
functional groups which could be used as capacitor electrodes.
By the use of GCE we weren’t able to determine low concentra-
tions of the analytes of interest therefore, this problem prompted
us to use an electrochemically oxidized GCE (OGCE) for quantify-
ing the analytes of interest. As expected, electrochemical oxidation
of GCE increases porosity of GCE and improves electron transfer
kinetic between analyte and electrode. Because of the non-linear
behavior of the recoded second-order data, three hybrid second-
order algorithms including ANN-RBL, U-PLS/RBL, and N-PLS/RBL
were used and their prediction performance was compared with
MCR-ALS and PARAFAC2. The observed shifts in the recorded data
were corrected by the use of COW algorithm. Finally, according to
the obtained results, U-PLS/RBL was chosen as the best algorithm
for the simultaneous quantification of the studied analytes in
human serum samples as experimental cases.

2. Theoretical and experimental considerations

2.1. Theoretical details

2.1.1. Generating second-order DPV data
In this work, the pulse height (ΔE) in DPV was changed to

obtain electrochemical second-order data. The theory behind the
proposed procedure will be briefly discussed. The current signal
intensity in DPV can be obtained using the following equations
[32]:
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nFAD1=2
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O

π1=2ðτ�τ0Þ1=2
PAð1�σ2Þ

ðσþPAÞð1þPAσÞ

� �
ð1Þ

PA ¼ ξexp nF
RT

EþΔE
2

�E0
0

� �� �
ð2Þ

σ ¼ exp
nF
RT

ΔE
2

� �
ð3Þ

ξ¼ DO

DR

� �1=2

ð4Þ

where ΔE is the pulse height and other symbols have their
conventional meanings. For a typical electrochemical reaction, a
data vector can be obtained by sweeping the potential at constant
ΔE and τ. Applying a different ΔE and sweeping potential at the
constant τ, will produce different data vectors, i.e., sweeping the
potential and applying different pulse heights (ΔEs) at a constant
pulse duration in DPV produces a non-bilinear second-order data.

2.1.2. Second-order calibration algorithms
Second-order data can be processed by a variety of algorithms

for analyte quantitation. Those classified as trilinear are: (1) parallel
factor analysis (PARAFAC) [33], (2) different versions of alternating
trilinear decomposition (ATLD) [34], such as self-weighted ATLD
(SWATLD) [35] and penalized ATLD (APTLD) [36], (3) generalized

A.R. Jalalvand et al. / Talanta 134 (2015) 607–618608



rank annihilation method (GRAM) [37], (4) direct trilinear decom-
position (DTLD) [38], and (5) bilinear least-squares combined with
residual bilinearization (BLLS/RBL) [39,40]. All these methods
assume an intrinsic mathematical model in which the profiles of
all components are the same in all samples.

On the other hand, there are algorithms allowing for deviations
of multi-linearity, which may be able to model retention time
shifts, such as: (1) multivariate curve resolution coupled-
alternating least squares (MCR-ALS) [41] and (2) PARAFAC2, a
variant of PARAFAC which allows profile variations in one of the
data dimensions from sample to sample [42]. In MCR-ALS, the
basis of the successful data resolution is the building of an
augmented matrix, placing all calibration and test data matrices
adjacent to each other in the pulse height direction. In this way,
the time profile for a given component is allowed to vary from
sample to sample. In the case of PARAFAC2, a relaxed PARAFAC
model is employed which allows profiles to vary in one of the data
dimensions from sample to sample. PARAFAC2 provides similar
information to its trilinear counterpart, except that the pulse
height profile is not common to all samples. What is important,
however, is that it renders analyte scores which are also used to
predict its concentration in the unknowns by pseudo-univariate
calibration. PARAFAC2 admits lesser constraints to be imposed
during the least-squares fit in comparison with the full range of
constraints which are available for MCR-ALS in both data dimen-
sions [43]. Thus, in certain complex cases the latter methodology
may produce results which are better from the point of view of
their physical interpretability, analytical accuracy and precision.

Other potentially useful second-order calibration methods are
unfolded partial least-squares (U-PLS) [44], multi-way PLS (N-PLS)
[45], and ANN-RBL [46], and should be combined with RBL if the
second-order advantage is to be achieved [47–52]. These PLS
algorithms intend to model the profile variations by incorporating
a flexible latent structure in regressing the data. However, their full
potentiality regarding the modeling of pulse height variations is still
a matter of debate. In any case, PLS models do not provide chemical
recognizable information, because they internally work with
abstract loadings, which are linear combinations of true profiles.

2.1.3. Pre-treatments of recorded data
Besides the problem arising from the presence of severely over-

lapping analyte profiles, in the present study two additional compli-
cations may occur: (1) interactions among analytes and the
background interferents present in the serum, which may cause
signal changes in comparison with pure analyte profiles, and (2)
sample-to-sample potential shifts in the analyte profiles, which are
common in voltammetric studies. For tackling the first problem, it
was necessary to correct the baselines of the recorded data. Con-
cerning the second commented problem, some preprocessing alter-
natives were independently applied on the electrochemical
responses. Voltammetric performance can be enhanced by eliminat-
ing noise and background components, thus baseline elimination is a
crucial step for reducing both the complexity and the number of the
unexpected components [53]. Considering this aim, we used the
method proposed by Eilers et al. [54] for background elimination. No
math will be described here; see Ref. [54] for all necessary equations
and formalism. Moreover, it was demonstrated that the use of
potential shift corrections improves the performance of resolution
by second-order algorithms. Therefore, interest in potential shift
correction continues. For correction of shifts or misalignments in
data signals, a procedure termed COW was introduced by Nielsen
et al. [55]. COW is a piecewise or segmented data preprocessing
method aimed at justifying a sample data vector toward a reference
vector by allowing limited changes in segments lengths on the
sample vector. The ratio between the number of points in the

reference vector N and the selected segment length I determines
the number of segments, or rather the number of segment borders.
An equal number of segments are specified on the sample vector. The
maximum length increase or decrease in a sample segment is
controlled by the so-called slack parameter t. In COW, the different
segment lengths on the sample vector are selected (or the borders
are shifted; “warped”) so as to optimize the overall correlation
between sample and reference. The problem is resolved by breaking
down the global problem in a segment-wise correlation optimization
by means of a dynamic programming algorithm (DP) [56,57]. The
solution space of this optimization is described by two parameters:
the number of segment borders Iþ1 and the length of the slack area
t. It is usual to fix the initial and final boundaries so that the first and
last points in the sample and reference vectors are forced to match.
The algorithm is described in detail in the original papers [56,58–60].

2.1.4. Analytical figures of merit
Analytical figures of merit (AFOM), such as accuracy, sensitivity

and selectivity, is an important necessity for the validation of
chemometric methods. In chemometrics, the root mean squares
error of prediction (RMSEP) generally expresses the accuracy of
the model. It reports the closeness of agreement between the
reference value and the value found by the model:

RMSEP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑I

n ¼ 1ðynominal�ypredictedÞ
I�1

s
ð5Þ

When expressing AFOM for multi-variate calibration methods,
the part of the signal that relates uniquely to the analyte of interest
is more important than the total signal. This unique signal is
termed net analyte signal (NAS). For second-order data, the
estimation of NAS is analogous to those for first-order procedures.
In the present work, the NAS is the pure analyte data obtained by
the second-order algorithms and can be calculated according to
the following equation;

NASij ¼ aijðbj � cTj Þ ð6Þ

where NASij is the net analyte signal for the ith sample and jth
analyte, aij is the obtained score, bj and cj are the loading vectors
for other dimensions and � means the kronecker product. When
using second-order advantage, each ith sample will have a specific
value of NAS, and sensitivity (SENi) is estimated as the NAS at unit
concentration, as shown in Eq. (7). Selectivity (SELi) is estimated as
the ratio between SENi and the total signal, according to Eq. (8).

SENi ¼ ‖NASi‖F ð7Þ

SELi ¼
‖NASi‖F
‖Ni‖F

ð8Þ

where Ni is the matrix of the total signal and the symbol || ||F means
the Frobenius norm of a matrix. A more in formative AFOM is the
analytical sensitivity (γ), which is defined, as the ratio between
SENi and the variance of instrumental signal, which may be
estimated by replicate blank measurements:

γi ¼
SENi

Sð0Þ ð9Þ

The inverse of this parameter (γ�1) reports the minimum
concentration difference between two samples that can be deter-
mined by the model. Finally, according to Eq. (10) the limit of
detection (LOD) can be estimated as 3.3 times the standard
deviation for a sample of low or zero analyte concentration.

LOD¼ 3:3S 0ð Þ ð10Þ
As the second-order advantage was applied, SEN and SEL

determinations are sample specific and cannot be defined for the
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multi-way method as a whole. In such cases, average values for a
set of samples can be estimated and reported.

2.2. Experimental details

2.2.1. Chemicals and solutions
AC (Fluka), UA (Merck), FA (Sigma) and NE (Sigma) were used

as received. All other chemicals (Merck) used were of analytical
grade. A phosphate buffer solution (PBS, 0.1 mol L�1) of pH
3.0 was prepared using Na2HPO4 and NaH2PO4. Stock solutions
of UA (0.01 mol L�1), AC (0.01 mol L�1), NE (0.01 mol L�1) and FA
(0.01 mol L�1) were prepared in PBS (0.1 mol L�1, pH 3.0) and
maintained in a refrigerator at 4 1C in dark (in these conditions
they were stable for at least three months). From these solutions,
working solutions were freshly prepared by taking appropriate
aliquots and diluting with PBS to the desired concentrations.
[Fe(CN)6]3�/4� solution (redox probe, 5.0�10�3 mol L�1) was
prepared in PBS (0.1 mol L�1, pH 3.0) and used for the measure-
ments. All solutions were prepared with ultrapure water (UPW).
The UPW was obtained from a Milli-Q water purification system
from Millipore (provided by Kermanshah Oil Refining Company).

2.2.2. Apparatus and softwares
Electrochemical experiments were performed using a m-Auto-

labIII/FRA2 controlled by the Nova software (Version 1.8). A
conventional three-electrode cell was used with a saturated
calomel electrode (SCE) as reference electrode, a Pt wire as counter
electrode and a bare or modified GCE as working electrode.
Electrochemical impedance spectroscopy (EIS) was carried out
using the same three-electrode configuration above on the men-
tioned m-Autolab in the PBS (0.1 mol L�1, pH 3.0) and containing
equimolar [Fe(CN)6] �4/�3 in a frequency range from 0.1 Hz to
100 kHz. A JENWAY-3345pH-meter equipped with a combined
glass electrode was used to pH measurements. All the recorded
electrochemical data was smoothed, when necessary, and con-
verted to data matrices by the use of several home-made mfiles in
MATLAB environment (Version 7.14, MathWorks, Inc.). Baseline
correction routines based on an adaptation of the method
described in Eilers et al. [54]. Data alignment using COW was
performed in MATLAB environment. All the second-order algo-
rithms used in this study were run in MATLAB environment. All
the computations were performed on a DELL XPS laptop (L502X)
with Intel Core i7-2630QM 2.0 GHz, 8 GB of RAM and Windows
7-64 as its operating system.

2.2.3. Electrode preparation
Prior to electrooxidation process, GCE was pretreated by

mechanical and electrochemical polishing according to the follow-
ing procedure. Before its first use the electrode surface was briefly
scoured by a silicon carbide emery paper of 1200.0 grit to obtain a
fresh surface. To smoothen the resulting relatively rough surface it
was further subjected to sequential polishing by polishing cloth
covered with alumina powder of 1.0, 0.3 and 0.05 mm particle size
(Buehler, USA) for respectively 5.0, 10.0 and 20.0 min. To remove
any adherent Al2O3 particles the electrode surface was rinsed
thoroughly with UPW and cleaned in an ultrasonic bath containing
UPW for 2.0 min. Further the GCE was oxidized by performing 10.0
cycles in 0.1 mol L�1 H2SO4 between 0.0 and 2.0 V at 0.1 V s�1. The
oxidized GCE was washed with UPW and transferred to pH 3.0 PBS
for the further studies.

2.2.4. Preparation of real samples
A serum sample kindly provided by a Medical Diagnostic

Laboratory in Kermanshah, Iran, was pretreated by the following
procedure: to eliminate protein and other substances, 5.0 mL of

human serum sample was placed in a10.0 mL glass tube and 5.0 mL
of 15.0% (w/v) zinc sulfate solution-acetonitrile (50/40,v/v) was
added. The glass tube was vortexed for 20.0 min, maintained at
4.0 1C for 15.0 min followed by centrifugation at 4000.0 rpm for
5.0 min. Then, the supernatant was collected in the same tube and
this solutionwas used for subsequent analyses. Serum samples were
partially diluted with PBS (0.1 mol L�1, pH 3.0) and spiked with
different amounts of AC, NE, UA, and or FA. Then, aliquots of the
diluted samples were introduced into the electrochemical cell.

3. Results and discussion

3.1. Electrochemical studies

3.1.1. Characterization of OGCE
Fig. 1A shows the oxidation process of GCE. Here, the increasing

anodic peak current indicates the oxidation process of GCE surface.
To confirm the oxidized surface, it was transferred to PBS
(0.1 mol L�1, pH 3.0) for cyclic voltammetric (CV) studies. In PBS
(0.1 mol L�1, pH 3.0), the OGCE displays a couple of well-defined
and reversible redox peak (Fig. 1B, curve a). At the same time,
well-polished bare GCE (Fig. 1B, curve b) fails to exhibit such kind
of redox peak in PBS (0.1 mol L�1, pH 3.0). This examination
validates the oxidized surface of GCE. The electrochemical oxida-
tion process of GCE results in the formation of functional groups
like carbonyl, quinoid, carboxyl and hydroxyl radical species on the
electrode surface [60]. In particular, the formation of these func-
tional groups exhibits a redox peak and gives the special electro-
chemical properties. Further based on the previous literature
reports [60–63] it was found that the important oxygen functional
group found on the electrode surface supposed to be carboxyl and
the remaining is carbonyl, etc. At the same time, we did not mean
that other groups (carbonyl, quinoid and hydroxyl) did not involve
in electrocatalytic process, but we are assuming that carboxyl
group will be the major functional group for the proposed
electrode. Further, [60–62,64] clearly report about the surface
porous nature of GCE. They have claimed that anodic pretreatment
process does not create any porous nature but opens the closed
pores which already present on electrode surface [60,65]. Thus,
this type of oxidation will result in the formation of porous nature
on electrode surface [60]. Further the OGCE was examined for
different scan rate studies in PBS (0.1 mol L�1, pH 3.0). Fig. 1C
exhibits the CVs of the OGCE in PBS (0.1 mol L�1, pH 3.0) at
different scan rates in the range of 0.01–1 V s�1. Here, by increas-
ing the scan rate, both peak currents increase and oxidation and
reduction peaks shift to more and less potentials, respectively.
Also, the anodic and cathodic peak currents were linearly depen-
dent on the scan rate (Fig. 1D), which indicates that OGCE surface
reaction was a surface-controlled process. The Nyquist plot of EIS
of OGCE (Fig. 1E, curve a) is smaller compared with GCE (curve b) it
indicates that the surface of OGCE has been modified with the
functional groups which make the electron transfer kinetics
process as a faster one, because electrochemical oxidation of GCE
increases porosity of GCE and improves electron transfer kinetic
between analyte and electrode. Furthermore, the OGCE has been
examined in various pH solutions (not shown). From the plot of
formal potentials (E00) vs. pH of the OGCE, the slope value was
found as 54 mV/pH, which is close to the expected value of
59 mV/pH for one electron and one proton reaction process,
respectively.

The surface areas of GCE, and OGCE were evaluated by the
Randles–Sevcik equation (298.15 K), using the redox currents of
the ferricyanide (ip):

ip ¼ ð2:678� 105Þn3=2 υ1=2 D1=2 AC ð11Þ
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where D, the diffusion coefficient of the ferricyanide, was
6.3�10�6 cm2 s�1; n and C represent the transferring electron
number and the concentration (mol dm–3) of the ferricyanide; υ
was the scan rate (V s–1); and A was the surface area (cm2). The
surface area of the bare GCE is calculated to be 0.124 cm2. After
oxidation of GCE, the redox current of the ferricyanide enlarged
about 23%, indicating that the OGCE has an apparent surface area
of 0.152 cm2. From these results, it can be confirmed that the
formation of oxygen functional groups did enhance the electron
transfer between the analyte and the electrode interface.

Stability of the OGCE was investigated by storing at room
temperature in presence and absence of pH 3.0 PBS. It was stable
for 4.0 weeks and after 4.0 weeks a gradual decrease (8%) has been
found from the current initial values. The OGCE can be prepared
within 12.0 min and by manual polishing with alumina slurry we
can retain the original nature of the GCE very easily. The back-
ground current variations of the OGCE surface at five GCE were
less than 5.0% which validates the reproducible nature of the
oxidized effect on the GCE surface. These results suggest that the
OGCE possesses the long term stability and reproducibility.

3.1.2. Voltammetric characteristics of AC, NE, UA, and FA at OGCE
Effect of solution pH on electrochemical response of OGCE

toward simultaneous determination of AC, NE, and UA was studied
using CV. Fig. 2A–C shows the influence of pH of the PBS, in the
range of 2.0–12.0, on the signal intensities of AC, NE, and UA,
respectively. As can be observed in Fig. 2, all anodic peak currents
of the studied analytes have a maximum value at pH 3.0. Taking
into account that for analytical purposes both maximal and stable
currents are necessary, a pH value of 3.0 was selected for further
experiments.

The effect of scan rate on the electrocatalytic oxidation of AC,
NE, and UA at the OGCE was investigated by CV (not shown). Plots
of anodic peak current versus the square root of scan rate in the
range of 10–500 mV s�1, was constructed (not shown). These plots

were found to be linear, suggesting that the processes were
diffusion-controlled.

The individual electrocatalytic oxidation of AC, NE, and UA at
GCE (Fig. 3A) and OGCE (Fig. 3B) was investigated using CV. Here,
the OGCE reduces the anodic over potentials and increases anodic
peak currents of AC and NE, but increases both anodic over
potential and anodic peak current of UA comparing with GCE.
The next attempt was employed for the simultaneous determina-
tion of AC, NE, and UA. The oxidation peak potential for FA (Fig. 3B,
curve d) is very close to those of AC (curve a) and UA (curve c).
Consequently, FA is one of the usual interferences in the determi-
nation of AC, NE, and UA. Therefore, interest in exploiting second-
order advantage from voltammetric data for the simultaneous
determination of AC, NE, and UA in the presence of FA continues.

3.2. Chemometric studies

3.2.1. Calibration, validation, and test sets
Since DPV has a much higher current sensitivity than CV, it has

been used to simultaneous determination of the studied analytes.
Prior to the second-order calibration experiment, a calibration graph
(not shown) has been constructed for each analyte of interest, by
varying the concentration values and registering voltammograms at
the optimised conditions in DPV. Univariate calibrations indicated
that, under the established working conditions (PBS 0.1 mol L�1, pH
3.0 and DPV conditions: step potential 0.025 V, pulse height 0.05 V,
pulse time 0.05 s, and scan rate 0.05 V s�1), linearity is held in the
range 1.0 to 4400.0�10�6 mol L�1, 0.1 to 43.9�10�6 mol L�1, and
20.0 to 481.0�10�6 mol L�1 for AC, NE, and UA, respectively, which
were the limiting assayed concentrations in subsequent analyzes.

A calibration set of 14 samples containing AC, NE, and UA was
prepared in PBS (0.1 mol L�1, pH 3.0) according to a central
composite design (Table 1). A validation set of 10 synthetic mixtures
containing only AC, NE, and UA was prepared in PBS (0.1 mol L�1,
pH 3.0) with random concentrations in the ranges defined by the
univariate calibrations (Table 1). A test set of 10 synthetic mixtures

Fig. 1. (A) Electrooxidation process of GCE in 0.1 mol L�1 H2SO4 in the range of 0.0 and 2.0 V for 10.0 cycles at 0.05 V s�1. (B) CV response of (a) OGCE and (b) bare GCE in PBS
(0.1 mol L�1, pH 3.0). (C) CV response of OGCE in PBS (0.1 mol L�1, pH 3.0) at different scan rates: 0.01–1.0 V s�1. (D) The plot of cathodic and anodic peak currents of OGCE
vs. scan rate. (E) EIS curves of (a) OGCE and (b) bare GCE in PBS (0.1 mol L�1, pH 3.0).
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containing random concentrations of AC, NE, and UA was prepared
in PBS (0.1 mol L�1, pH 3.0) to which FA was added as uncalibrated
interference (Table 1). For all calibration, validation, and test sets,
DPVs of the each mixture of were recorded in different pulse heights
of 0.015–0.09 V with a 0.015 V interval.

3.2.2. U-PLS/RBL and N-PLS/RBL applied to the second-order data
Appling chemometrics tools such as U-PLS/RBL and N-PLS/RBL to

resolve data requires the uniform presentation of data, i.e., all signals
have to be adjusted to the same length and corresponding variables

have to be placed into the proper columns of the data matrix. The
signals obtained from voltammetric techniques often do not fulfill
this requirement. This problem is seen as the potential shift in
electrochemical data. These facts cause a decrease in the linearity,
which depends on the magnitude of the potential shift. A number of
algorithms is available for performing data alignment and one of the
most flexible ones in this regard is COW. Potential shift- and baseline
corrections were performed on a column-wise augmented data
matrix containing the raw data (Fig. 4A–C) related to calibration or
validation or test set. Fig. 4D–F shows the results of applying COW for
data alignment and it confirms the capability of COW for aligning the

Fig. 2. Cyclic voltammograms of (A) AC (1.0�10�3 mol L�1), (B) NE (1.0�10�3 mol L�1), and (C) UA (1.0�10�3 mol L�1) in PBS (0.1 mol L�1) at OGCE at different pHs.

Fig. 3. (A) Cyclic voltammograms of (a) AC (1.0�10�3 mol L�1), (b) NE (1.0�10�3 mol L�1), (c) UA (1.0�10�3 mol L�1), and (d) FA (1.0�10�3 mol L�1) at GCE in PBS
(0.1 mol L�1, pH 3.0), and (B) cyclic voltammograms of (a) AC (1.0�10�3 mol L�1), (b) NE (1.0�10�3 mol L�1), (c) UA (1.0�10�3 mol L�1), (d) FA (1.0�10�3 mol L�1), and
mixture of AC, NE, and UA at OGCE in PBS (0.1 mol L�1, pH 3.0). In all cases scan rate is 0.05 V s�1.
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data. Significant changes in baselines were then eliminated by the
method proposed by Eilers et al. [54], Fig. 4D–F. The pre-treated data
(potential shift- and baseline corrected data) was then used for next
computations.

In U-PLS/RBL and N-PLS/RBL, the selection was performed
using the cross-validation method described by Haaland and
Thomas [66,67] over just the calibration set. The optimum number
of factors is estimated by calculating the ratio F(A)¼PRESS
(AoAn)/PRESS(A), where PRESS is the predicted error sum of
squares, defined as PRESS¼Σ(ynominal�ypredicted)2, A is a trial
number of factors and An corresponds to the minimum PRESS.
The number of optimum factors was selected as that leading to a
probability of less than 75% and F41. Note that RBL is not required

for calibration samples because they did not include unexpected
components. The results of cross-validation to determine the
number of latent variables for U-PLS and N-PLS are summarized
in Table 2. This analysis led to the conclusion that the latter
number is 3 for the most cases, as expected for this system using a
mean centering procedure, with the exception of the 4 value for
NE processed with N-PLS. The presence of non-linearities which
are usually found in electrochemical data causes more latent
variables to model the variability of the data but in the present
study this limitation was tackled by potential shift correction.

When unexpected components take place in the samples, the
RBL procedure is then applied to the unfolded validation or test
data and the outcome scores are free from interferents signal,

Table 1
Composition of the samples used in the calibration, validation, and test sets.

Sample Calibration (10�6 mol L�1) Sample Validation (10�6 mol L�1) Sample Test (10�6 mol L�1)

AC NE UA AC NE UA AC NE UA FA

1 734.6 29.2146 76.987 1 56 5 78 1 5 5 25 45
2 2934.1 7.3146 76.987 2 345 9 35 2 15 34 45 130
3 2199.5 21.9 20 3 780 12 160 3 260 40 56 75
4 2199.5 0.1 230.5 4 1200 28 110 4 650 28 75 450
5 1 21.9 230.5 5 45 6 35 5 3800 16 440 20
6 4400 0.1 20 6 300 33 57 6 4200 18 65 240
7 1 0.1 481 7 245 38 48 7 120 28 32 390
8 1464.9 14.5854 153.513 8 0 21 220 8 70 32 140 32
9 4400 0.1 481 9 1800 0 340 9 35 35 180 15
10 1 43.9 20 10 110 7 0 10 90 10 74 98
11 734.6 7.3146 307.487 – – – – – – – – –

12 4400 0.1 20 – – – – – – – – –

13 1 43.9 20 – – – – – – – – –

14 2199.5 21.9 20 – – – – – – – – –

Fig. 4. (A) Raw voltammograms of the calibration set, (B) raw voltammograms of the validation set, (C) raw voltammograms of the test set, (D) pretreated data (potential
shift- and baseline corrected data) of the calibration set, (E) pretreated data (potential shift- and baseline corrected data) of the validation set, and (F) pretreated data
(potential shift- and baseline corrected data) of the test set.
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providing the so-called second-order advantage to the methodol-
ogy. Therefore, the next step was to estimate the number of
unexpected components in validation and test samples via the
post-calibration RBL procedure. This was done by considering the
variation of the residual as a function of the trial number of
unexpected components. The stabilization of the residual around
the instrumental noise (�2�10�7) suggested one unexpected
component. Using suitable latent variables described in Table 2 for
modeling the calibration data and a single unexpected component
for RBL, the U-PLS/RBL and N-PLS/RBL were applied to the
validation and test samples. The good agreement that exists
among the predicted and the nominal concentrations of the
analytes (see Table 3) demonstrates the success of RBL in extract-
ing the spectral contributions of the unknown component from
the sample. This ability, which refers to the second-order advan-
tage with U-PLS/RBL and N-PLS/RBL algorithms, makes prediction
possible with no potential interference from the sample.

3.2.3. ANN-RBL applied to the second-order data
Intrinsically non-linear data cannot be processed with classical

calibration methods resorting to linear underlying models. It is
possible that in the above mentioned cases one may find local
variable regions where the response behavior towards analyte
concentrations is approximately linear. However, if the whole set
of instrumental data needs to be explored, one has to resort to
alternatives which include, for example, ANNs. The back-
propagation of errors method was selected for training the ANNs.
Unfolded principal component analysis (U-PCA/RBL) is a recent
model, developed to obtain the second-order advantage from non-
linear second-order signals. The baseline corrected data without
any shift correction was decomposed by U-PCA/RBL to obtain
scores for training and prediction by back-propagation ANN. The
average training parameters for the three experimental data sets
herein studied are collected in Table 4. Results of application of
ANN/RBL to validation and test sets are shown in Table 3.

3.2.4. MCR-ALS and PARAFAC2 applied to the second-order data
The main premise of multivariate curve resolution (MCR)

techniques is to follow the multicomponent Beer’s law. Conse-
quently, they can be used to analyze the bilinear data. Appling
chemometrics tools such as MCR-ALS to resolve data requires the
uniform presentation of data, i.e., all signals have to be adjusted to

the same length and corresponding variables have to be placed
into the proper columns of the data matrix. The signals obtained
from voltammetric techniques often do not fulfill this requirement.
This problem is seen as the potential shift in electrochemical data.
These facts cause a decrease in the linearity, which depends on the
magnitude of the potential shift. In many cases, large lof values as
the results of potential shift for MCR-ALS analysis are obtained and
impel the analyst to use a higher number of components to
explain the non-linearity.

MCR-ALS as a powerful chemometrical method was applied on
a column-wise augmented data matrix (the calibration matrices
and the unknown matrix are placed adjacent to each other),
because this permits differentiation between the analyte and the
interferents. This algorithm needs initialization with system para-
meters as close as possible to the final results. Therefore, analyte
and interference voltammograms are required owing that the
resolution is based on the selectivity in the latter mode. In this
work, the selection of the purest voltammogram for the inter-
ferent was made based using homemade routines based on
SIMPLISMA (simple interactive self-modeling mixture analysis)
[68]. The number of contributing species in the system under
study when applying singular value decomposition (SVD) was
always equal to the real number of components, i.e. four when
analyzing test samples.

The applied constraints in ALS were non-negativity, and unim-
odality (for voltammogram profiles). The lack of linearity in the
system produced large excessive lack of fit (lof) values (all larger
than 20%) and convergence was not achieved and the results of
MCR-ALS were not satisfactory. The inefficiency of the MCR-ALS
model could be due to the potential shift of the data. The shift of
potential in the data as a possible source of inefficiency was
therefore corrected. Although the potential shift correction can
overcome the non-bilinearity in the data, it produces rank
deficient data. We therefore tried to overcome the rank deficiency
problem using matrix augmentation. The potential shift corrected
data were then augmented and standard MCR-ALS was performed
on the new augmented data. Applying MCR-ALS on the augmented
potential shift corrected data produced a low lof value (all
smaller than 7%) which was better than that obtained without
the potential shift correction. The results of applying MCR-ALS
on potential shift corrected data for the determination of the
analytes of interest in validation or test data sets are given in
Table 3.

Table 2
Cross-validation results for calibration samples using U-PLS and N-PLS.

AC NE UA

U-PLS PRESS F P U-PLS PRESS F P U-PLS PRESS F P

1 8.8�105 95.9 0.998 1 6.7�105 95.3 0.998 1 9.1�105 75.6 0.999
2 6.4�104 6.3 0.996 2 3.8�104 5.4 0.997 2 4.6�104 5.3 0.998
3 8.8�103 1.2 0.554 3 7.1�103 1.1 0.598 3 7.5�103 1.1 0.654
4 7.9�103 1.0 0.453 4 6.9�103 1.0 0.497 4 7.6�103 1.0 0.532
5 8.1�103 – – 5 6.8�103 – – 5 7.5�103 – –

6 7.6�103 – – 6 6.7�103 – – 6 7.3�103 – –

7 7.5�103 – – 7 6.5�103 – – 7 7.2�103 – –

8 7.6�103 – – 8 6.5�103 – – 8 7.4�103 – –

N-PLS N-PLS N-PLS
1 7.8�105 95.2 0.998 1 7.6�106 96.2 0.998 1 6.1�105 75.3 0.998
2 8.0�104 5.4 0.997 2 4.0�105 88.3 0.989 2 5.4�104 6.1 0.991
3 6.8�103 1.1 0.588 3 4.3�104 6.6 0.978 3 6.5�103 1.2 0.554
4 6.6�103 1.0 0.476 4 5.9�103 1.2 0.612 4 6.6�103 1.0 0.431
5 6.5�103 – –- 5 5.8�103 1.0 0.513 5 6.5�103 – –

6 6.5�103 – – 6 5.6�103 – – 6 6.3�103 – –

7 6.4�103 – – 7 5.5�103 – – 7 6.2�103 – –

8 6.4�103 – – 8 5.5�103 – – 8 6.4�103 - –
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PARAFAC2 as an advanced and more flexible variant of the
PARAFAC algorithm was developed to manipulate the three-way
data types deviated from trilinearity conditions [69–71].
Non-trilinear data structure can be faced when retention time
shifts or shape changes of profiles from sample to sample happens.
PARAFAC2 model for each slab of third-order tensor X can be
defined as follows:

Xk ¼ ADk Bkð ÞTþEk k¼ 1;…;K ð12Þ

where in chromatographic systems, Xk(I� J) represents the chro-
matographic data related to the kth run. K is the number of runs or
samples. Ak(I� F) is the loading matrix of first mode (resolved
voltammograms of F analytes), Dk(F� F) is a diagonal matrix holding
the kth row of the sample-mode loading matrix C, Bk(J� F) is the kth
profiles of the second mode and Ek is the matrix of residuals. The
initial estimates for the model has been obtained using singular
value decomposition (SVD) and the data analysis has been per-
formed with non-negativity constraints in the first and third
dimensions. As convergence criterion an absolute change of
1�10–7 has been used in percent variance explained. More details
about the model and algorithm are in the literature [69].

A three-way array, X was obtained by stacking K calibration
standards and one validation or test sample (Kþ1 runs). Then
individual PARAFAC2 models were built each time by including
one of the validation or test samples in the array. Proper number
of factors was selected. In this work, the correct number of factors
for each sample was determined by calculating the explained
variance of the model. Results of application of PARAFAC2 to
validation and test sets are shown in Table 3.

3.2.5. Comparison of predictive ability of the second-order
algorithms

In order to comparison of predictive ability of the second-order
algorithms, the predicted concentrations of both validation and
test sets (Table 3) were regressed on the nominal concentrations
(not shown). In this case an ordinary least squares (OLS) analysis of
predicted concentrations versus nominal concentrations was
applied [72]. The calculated intercept and slope were compared
with their theoretically expected values (intercept¼0, slope¼1),
based on the elliptical joint confidence region (EJCR) test. If the
ellipses contain the values 0 and 1 for intercept and slope (ideal
point), respectively, showing the predicted and nominal values do
not present significant difference at the level of 95% confidence
and the elliptic size denotes precision of the analytical method,
smaller size corresponds to higher precision [73]. Fig. 5A�F showsTa
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Table 4
ANN training results for all data sets.

Value

AC
Architecture (input-hidden-output neurons) 5–8–1
Number of training epoch 583–1075
Learning rate 0.5
Momentum 0.5

NE
Architecture (input-hidden-output neurons) 3–6–1
Number of training epoch 1114–11234
Learning rate 0.5
Momentum 0.5

UA
Architecture (input-hidden-output neurons) 3–8–1
Number of training epoch 745–8354
Learning rate 0.5
Momentum 0.5

A.R. Jalalvand et al. / Talanta 134 (2015) 607–618 615



the corresponding ellipses of the EJCR analyses. As can be
concluded from Fig. 5A�F, the best predictions for AC, NE, and
UA in both validation and test sets were obtained by U-PLS/RBL
(cyan ellipse) which shows the accurate determination of analytes
by the developed methodology. If the EJCRs of U-PLS/RBL for UA
determination in test set are analyzed (Fig. 5F), it is notable that
the ideal point falls on the cyan ellipse, denoting slightly poorer
prediction accuracy for UA in test set.

Analytical figures of merit (AFOM) for the proposed U-PLS/RBL
method including sensitivity (SEN), analytical sensitivity (γ), selec-
tivity (SEL), limit of detection (LOD) and RMSEP are summarized in
Table 5. From Table 5, it can be seen that the U-PLS/RBL model offers
a very sensitive and selective method for simultaneous determina-
tion of AC, NE, and UA.

3.2.6. Analysis of human serum samples
In view of the above results, U-PLS/RBL was selected as the

algorithm to be applied to real samples. To evaluate the feasibility of
the proposed method, simultaneous quantification of AC, NE, and UA

in the presence of FA was performed in partially diluted human
serum samples. Serum samples were partially diluted with PBS
(0.1 mol L�1, pH 3.0) and spiked with different amounts of AC, NE,
UA, and FA. Then, aliquots of the diluted samples were introduced
into the electrochemical cell. The DPV signals of the prepared
samples in optimized conditions and different pulse heights (15 to
90 mV with 15 mV increment) at the OGCE were recorded. The
recovery rates of the spiked samples were achieved between 97% and
105.88%, showing that the blood serum matrix does not show any
significant interference in our analysis (Table 6).

4. Conclusion

This study describes a very attractive methodology for the
simultaneous determination of AC, NE, and UA in the presence of
FA at the surface of OGCE by recording three-way voltammetric
arrays, and applying several second-order algorithms such as
U-PLS/RBL, N-PLS/RBL, ANN-RBL, MCR-ALS and PARAFAC2. The
main goals of this work were (i) to create electrochemical

Fig. 5. Elliptical joint regions (at 95% confidence level) for the slopes and intercepts of the regressions for (A) AC, validation set, (B) AC, test set, (C) NE, validation set, (D) NE,
test set, (E) UA, validation set, and (F) UA, test set. In all cases: black point marks the theoretical point (0,1), black ellipse shows ANN results, blue ellipse shows MCR-ALS
results, yellow ellipse shows N-PLS/RBL results, red ellipse shows PARAFAC2 results, and cyan ellipse shows U-PLS/RBL results. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 5
Analytical figures of merit for determination of AC, NE, and UA by U-PLS/RBL.

Analyte SEN (mA (10�6 mol L�1)�1) SEL LOD (10�6 mol L�1) RMSEP (10�6 mol L�1) Analytical sensitivity (10�6 mol L�1)�1

Validation set
AC 3.1 0.75 0.39 63.2
NE 2.9 0.71 0.32 51.8
UA 2.85 0.69 0.41 54.3
Test set
AC 2.8 0.69 0.28 68.9
NE 2.85 0.72 0.36 55.4
UA 2.74 0.66 0.47 52.3
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second-order data and (ii) to perform the analysis in the presence
of an unexpected interference. To achieve the first goal, second-
order data were created using a simple change in pulse height of
DPVs. Because of the non-linear behavior of the recorded voltam-
metric data, the potential shift correction was performed. The use
of three-way data, exploiting the information contained in full
voltammetric matrices and second-order algorithms, allowed the
successful simultaneous determination of AC, NE, and UA in both
synthetic and real samples even in the presence of FA as an
unexpected interference. Among the second-order algorithms
analyzed, U-PLS/RBL showed the best results for determination
of three analytes even in the presence of FA as an unexpected
interference. This is the newest example of the power of U-PLS/
RBL for processing of multi-way electrochemical data. The pro-
posed methodology in this study exploited the second-order
advantage and also demonstrated that combination of electroche-
mical measurements with U-PLS/RBL method turned possible the
simultaneous determination of AC, NE, and UA in the presence of
FA as uncalibrated interference in complex matrices such as
human serum, despite the serious interference from the back-
ground components. The potential advantages of this determina-
tion, such as sensitivity, rapidity and low-cost, can be even more
highlighted by considering the possibility of the proposed method
for biosensing and clinical applications.

Acknowledgements

The authors wish to express their sincere appreciation to Razi
University Research Council, the UNL, CONICET and ANPCyT for
financial support of this project.

References

[1] R. Bro, Crit. Rev. Anal. Chem. 36 (2006) 279–293.
[2] G.M. Escandar, N.M. Faber, H.C. Goicoechea, A. Muñoz de la Peña, A.C. Olivieri,

R.J. Poppi, Trends Anal. Chem. 26 (2007) 752–765.
[3] A.C. Olivieri, G.M. Escandar, A. Muñoz de la Peña, Trends Anal. Chem. 30 (2011)

607–617.
[4] K.S. Booksh, B.R. Kowalski, Anal. Chem. 66 (1994) 782–791.
[5] C.N. Ho, G.D. Christian, E.R. Davidson, Anal. Chem. 50 (1978) 1108–1113.
[6] A.C. Olivieri, Anal. Chem. 80 (2008) 5713–5720.
[7] D. Voet, J.G. Voet, Biochemistry, second ed., Wiley, New York, 1995.
[8] M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A.M. Haji-Shabani, J. Pharm.

Biomed. Anal. 18 (1998) 877–881.
[9] M. Novotny, V. Quaiserová-Mocko, E.A. Wehrwein, D.L. Kreulen, G.M. Swain,

J. Neurosci. Methods 163 (2007) 52–59.
[10] O. Gyllenhaal, L. Johansson, J. Vessman, J. Chromatogr. A 190 (1980) 347–357.
[11] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, J. Chromatogr. B 847 (2007)

88–94.
[12] M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, M. Abdollahi-Alibeik, A. Benvidi,

Sens. Actuators, B 171-172 (2012) 380–386.
[13] R.N. Goyal, M. Abdul Aziz, M. Oyama, S. Chatterjee, A. Raj, S. Rana, Sens.

Actuators, B 153 (2011) 232–238.
[14] G.R. Xu, H.Y. Chang, H. Cho, W. Meng, I.K. Kang, Z.U. Bae, Electrochim. Acta 49

(2004) 4069–4077.
[15] M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, B.B.F. Mirjalili,

Biosens. Bioelectron. 26 (2011) 2102–2106.

[16] F.F. Daly, J.S. Fountain, L. Murray, A. Graudins, N.A. Buckley, Med. J. Aust. 188
(2008) 296–301.

[17] A.M. Larson, J. Polson, R.J. Fontana, T.J. Davern, J.S. Reisch, F.V. Schiødt,
G. Ostapowicz, A.O. Shakil, W.M. Lee, Hepatology 42 (2005) 1364–1372.

[18] J.T. Afshari, T.Z. Liu, Anal. Chim. Acta 443 (2001) 165–169.
[19] M.A. Campanero, B. Calahorra, E. Garcia-Quétglas, A. López-Ocáriz, J. Honorato,

J. Pharm. Biomed. Anal. 20 (1999) 327–334.
[20] F. Ghorbani-Bidkorbeh, S. Shahrokhian, A. Mohammadi, R. Dinarvand, Elec-

trochim. Acta 55 (2010) 2752–2759.
[21] C.X. Xu, K.J. Huang, Y. Fan, Z.W. Wu, J. Li, J. Mol. Liq. 165 (2012) 32–37.
[22] R.N. Goyal, V.K. Gupta, S. Chatterjee, Sens. Actuators, B 149 (2010) 252–258.
[23] R.N. Goyal, V.K. Gupta, M. Oyama, N. Bachheti, Electrochem. Commun. 7

(2005) 803–807.
[24] V.K. Gupta, R. Jain, K. Radhapyari, N. Jadon, S. Agarwal, Anal. Biochem. 408

(2011) 179–196.
[25] P. Kalimuthu, S. Abraham John, Anal. Chim. Acta 647 (2009) 97–103.
[26] H. Beitollahi, I. Sheikhshoaie, Anal. Methods 3 (2011) 1810–1814.
[27] J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron. 34 (2012) 70–76.
[28] H. Beitollahi, A. Mohadesi, S. Khalilizadeh Mahani, A. Akbari, Anal. Methods 4

(2012) 1029–1035.
[29] S. Daya, S. Anoopkumar-Dukie, Life Sci. 67 (2000) 235–240.
[30] H. Maharaj, D.S. Maharaj, K.S. Saravanan, K.P. Mohanakumar, S. Daya, Metab.

Brain Dis. 19 (2004) 71–77.
[31] R.T.P. Paul, A.P. McDonnell, C.B. Kelly, Hum. Psychopharmacol. Clin. Exp. 19

(2004) 477–488.
[32] L.R. Faulkner, A.J. Bard, Electrochemical Methods: Fundamental and Applica-

tion, second ed., Wiley, New York, 2001.
[33] R. Bro, Chemom. Intell. Lab. Syst 38 (1997) 149–171.
[34] H.L. Wu, M. Shibukawa, K. Oguma, J. Chemom 12 (1998) 1–26.
[35] Z.P. Chen, H.L. Wu, J.H. Jiang, Y. Li, R.Q. Yu, Chemom. Intell. Lab. Syst 52 (2000)

75–86.
[36] A.L. Xia, H.L. Wu, D.M. Fang, Y.J. Ding, L.Q. Hu, R.Q. Yu, J. Chemom 19 (2005)

65–76.
[37] E. Sanchez, B.R. Kowalski, Anal. Chem. 58 (1986) 496–499.
[38] E. Sanchez, B.R. Kowalski, J. Chemom 1 (1990) 29–45.
[39] M. Linder, R. Sundberg, Chemom. Intell. Lab. Syst 42 (1998) 159–178.
[40] M. Linder, R. Sundberg, J. Chemom 16 (2002) 12–27.
[41] R. Tauler, Chemom. Intell. Lab. Syst 30 (1995) 133–146.
[42] H.A.L. Kiers, J.M.F. Ten Berge, R. Bro, J. Chemom 13 (1999) 275–294.
[43] W. Windig, J. Guilment, Anal. Chem. 63 (1991) 1425–1432.
[44] S. Wold, P. Geladi, K. Esbensen, J. Øhman, J. Chemom 1 (1987) 41–56.
[45] R. Bro, J. Chemom 10 (1996) 47–61.
[46] M.J. Culzoni, P.C. Damiani, A. Garcıa-Reiriz, H.C. Goicoechea, A.C. Olivieri,

Analyst 132 (2007) 654–663.
[47] J. Öhman, P. Geladi, S. Wold, J. Chemom. 4 (1990) 79–90.
[48] V.A. Lozano, G.A. Iba~nez, A.C. Olivieri, Anal. Chim. Acta 610 (2008) 186–195.
[49] A.C. Olivieri, J. Chemom 19 (2005) 253–265.
[50] M.J. Culzoni, H.C. Goicoechea, A.P. Pagani, M.A. Cabezón, A.C. Olivieri, Analyst

131 (2006) 718–723.
[51] A. García Reiriz, P.C. Damiani, M.J. Culzoni, H.C. Goicoechea, A.C. Olivieri,

Chemom. Intell. Lab. Syst 92 (2008) 61–70.
[52] A. García Reiriz, P.C. Damiani, A.C. Olivieri, Chemom. Intell. Lab. Syst 100

(2010) 127–135.
[53] M.B. Gholivand, A.R. Jalalvand, H.C. Goicoechea, T.h. Skov, Talanta 119 (2014)

553–563.
[54] P.H.C. Eilers, I.D. Currie, M. Durban, Comp. Stat. Data Anal 50 (2006) 61–76.
[55] N.P.V. Nielsen, J.M. Carstensen, J. Smedsgaard, J. Chromatogr. A 805 (1998)

17–35.
[56] F.S. Hillier, G.J. Liebernan, Introduction to Operations Research, McGraw-Hill,

New York, 2001.
[57] D. Bylund, R. Danielsson, G. Malmquist, K.E. Markides, J. Chromatogr. A 961

(2002) 237–244.
[58] V. Pravdova, B. Walczak, D.L. Massart, Anal. Chim. Acta 456 (2002) 77–92.
[59] K. Kaczmarek, B. Walczak, S. de Jong, B.G.M. Vandginste, Acta Chromatogr. 15

(2005) 82–96.
[60] S. Thiagarajan, T.H. Tsai, S.M. Chen, Biosens. Bioelectron. 24 (2009) 2712–2715.
[61] M.G. Sullivan, B. Schnyder, M. Bartsch, D. Alliata, C. Barbero, R. Imhof, R. Kotz,

J. Electrochem. Soc. 147 (2000) 2636–2643.
[62] M.G. Sullivan, R. Kotz, O. Haas, J. Electrochem. Soc. 147 (2000) 308–317.

Table 6
Results of simultaneous determination of AC, NE, and UA in human serum sample by U-PLS/RBL.

Sample Added (10�6 mol L�1) Found (10�6 mol L�1) Recovery (%)

AC NE UA FA AC NE UA AC NE UA

1 None 20 40 45 N.Da 19.4 43.5 - 97 105.88
2 30 None 250 87 31 N.D 255 103.2 – 101.9
3 150 11 None 34 147.3 11.3 N.D 98.2 100.9 –

4 210 28 135 20 216 28.6 137 102.8 102 101.45
5 60 10 85 60 58.2 10.2 83 97 101.96 97.65

a Not detected.

A.R. Jalalvand et al. / Talanta 134 (2015) 607–618 617



[63] S. Yamazaki, Z. Siroma, T. Ioroi, K. Tanimoto, K. Yasuda, Carbon 45 (2007)
256–262.

[64] N.R. Vettorazzi, L. Sereno, M. Katoh, M. Ota, L. Oteroa, J. Electrochem. Soc. 155
(2008) 110–115.

[65] A. Braun, M. Bartsch, B. Schnyder, R. Kotz, O. Haas, H.G. Haubold, G. Goerigk, J.
Non-Cryst. Solid. 260 (1999) 1–14.

[66] D.M. Haaland, E.V. Thomas, Anal. Chem. 60 (1988) 1193–1202.
[67] D.M. Haaland, E.V. Thomas, Anal. Chem. 60 (1988) 1202–1208.

[68] W. Windig, J. Guilment, Anal. Chem. 63 (1991) 1425–1432.
[69] R. Bro, Multiway Analysis in the Food Industry, Doctoral Thesis, University of

Amsterdam, Amsterdam, the Netherlands, 1998.
[70] R. Bro, C.A. Andersoon, H.A.L. Kiers, J. Chemom. 13 (1999) 295–309.
[71] H.A.L. Kiers, J.M.F. Ten Berge, R. Bro, J. Chemom 13 (1999) 275–294.
[72] A.G. Gonzalez, M.A. Herrador, A.G. Asuero, Talanta 48 (1999) 729–736.
[73] J.A. Arancibia, G.M. Escandar, Talanta 60 (2003) 1113–1121.

A.R. Jalalvand et al. / Talanta 134 (2015) 607–618618




